Магнитное поле – странный раздражитель
При слабом шорохе кролик убегает. А вырезанная из тела кроличья мышца, хотя она и живая, не шевельнется даже при громовом ударе. В чем же дело? Ответ напрашивается сам собой: она не слышит. На мышцу звук действует не прямо, а лишь пройдя по цепочке: ухо — нервная система. Ясно, что изучать действие звука или любого подобного раздражителя (как говорят ученые) нужно на таком животном, у которого эта цепочка сохранена. Совсем по-другому ставят опыты с электрическим током: здесь можно брать и отдельные органы, мышцы. Ведь сама нервная система приводит мышцу в действие с помощью электрического тока.
Много общего у электричества с магнитным полем. Это близкие физические явления. Закономерно было предположить, что и действие их на организм сходно. Увы! Ставился опыт за опытом, но даже сильный магнит не вызывал сокращения изолированной мышцы, хотя она явно «вздрагивала» от слабого электрического тока. Встал вопрос: влияет ли вообще магнит на организм? Может быть, он действует каким-то иным способом, нежели электрический ток? Выяснением этого и занялись сотрудники кафедры физиологии высшей нервной деятельности МГУ под руководством профессора Л. Г. Воронина.
Путь исследования указало нам учение И. П. Павлова об условных рефлексах. Для наших опытов мы выбрали рыб. Почему? Мы основывались на мнении некоторых ученых, считающих, что рыбы и птицы, пускаясь в далекие путешествия, находят путь по магнитному полю Земли. Значит, они должны воспринимать действие магнита.
Если через аквариум пропустить слабый ток, то стоящая неподвижно рыба вздрогнет, проплывет несколько кругов и опять успокоится. Ни свет, ни звук, ни магнит сами по себе не вызывают подобных движений рыбы. Для выработки условных рефлексов мы стали сопровождать каждый из этих раздражителей электрическим ударом. Например, каждый раз включая свет, пропускали одновременно электрический ток. Через 5—10 таких сочетаний рыба начинала двигаться, как только загорался свет, уже не дожидаясь, когда ее ударит ток. То же самое происходило и при звуковых сигналах.
Но с магнитом ничего не получалось. 20 раз одновременно с электрическим ударом подносили магнит к аквариуму… 30… 40 раз… Мы уже почти отчаялись выработать условный рефлекс, но наконец, после 50 сочетаний рыбы все же начали двигаться при действии одного лишь магнита. Победа! Рыбы воспринимают магнитное поле. Но почему они так поздно реагируют на него? Обычно рефлекс плохо вырабатывается, когда раздражитель или слишком сильный или слишком слабый. Наше магнитное поле (равное 100 эрстедам) примерно в 150 раз превосходило магнитное поле Земли. А может быть, оно слишком сильное? Стали его уменьшать, но дело не пошло лучше. Оставалось заключить, что магнит в сравнении со светом или звуком является слабым раздражителем, сколько его ни усиливай. Это подобно тому, как писк даже тысячи комаров остается слабым в сравнении с голосом одного человека. Вероятно, именно из-за слабости магнита так трудно обнаружить его действие на животных.
Обычно на слабый раздражитель не только рефлексы вырабатываются с трудом, но и сам он мало влияет на другие, уже выработанные раньше рефлексы. Попробовали проверить магнит в этом плане и получили странную картину.
В аквариуме рыбка с условным рефлексом на звонок. Включаем звук, и она начинает двигаться. Все нормально. Но вот вместе со звонком подносим магнит. Что такое? Рыба остается спокойной, как будто не слышит знакомых звуков. Пробуем заменить магнит светом, но не получаем такого «заглушающего» действия. То есть магнит оказывается здесь сильнее света. Вообще ведет он себя, как странный раздражитель: с одной стороны, слабый, а с другой — сильный.
Еще более неожиданные результаты дали опыты с голубями. У них совсем не удалось выработать условный рефлекс на магнит. Вместе с тем условные рефлексы, которые были выработаны при помощи других раздражителей, магнитное поле заглушало так же отчетливо, как и у рыб. Это было более чем странно. До сих пор исследователи были уверены, что если раздражитель воспринимается животным, то на него обязательно можно получить условный рефлекс. А здесь действие налицо, но рефлекса нет. Чтобы объяснить все эти странности, нужно было выяснить, как же магнит воспринимается животным.
Вначале нам казалось, что найти ответ на этот вопрос легко. Совершенно случайно было обнаружено, что если у рыб выработать магнитный рефлекс, то уже на свет рефлекса вырабатывать не нужно: он возникает сам. И, наоборот, если выработать условный световой рефлекс, магнитный появляется как бы сам собой. Звуковой рефлекс не обнаруживал такого близкого родства с магнитным. Напрашивался вывод, что магнитное поле воспринимается так же, как и свет, — сетчаткой глаза.
Об этом писали и в научной литературе. При действии магнита некоторые люди ощущали слабое свечение. Магнит «не звучал», «не издавал запаха», а «светился»! Все говорило за то, что если не будет глаз, восприятие магнитного поля должно нарушиться. Каково же было наше удивление и разочарование, когда безглазые рыбы стали реагировать на магнит не хуже зрячих! Значит, сетчатка здесь ни причем. Механически продолжая давать обычный набор условных раздражителей, мы вдруг увидели, что наши слепые рыбы реагируют на свет! Правда, свет они воспринимали хуже, чем зрячие, но вполне отчетливо. И, главное, у них еще ярче выявилось сходство в действии света и магнита. Но теперь уже трудно было сказать, магнит ли «светится» или свет «магнитится».
Итак, наш странный раздражитель «выбрал себе в товарищи» свет. Если они действительно «неразлучные друзья» и один всегда сопутствует другому, то это облегчает поиск.
Сравним условные рефлексы с ниточками, тогда головной мозг, где замыкаются рефлексы, будет узлом, связывающим все нити. Вот мы и стали удалять различные участки мозга рыбы и каждый раз смотреть, сохранились ли наши ниточки — магнитные рефлексы. Удаление переднего мозга не нарушило их. Когда был вырезан средний мозг, немного изменился только световой рефлекс: он стал таким же, как у ослепленной рыбы. Удалили мозжечок — исчез звуковой рефлекс, повредили промежуточный мозг — исчезли и световой и магнитный рефлексы.
Физиологам известно, что лягушка, если положить кристаллик соли на ее промежуточный мозг, выдергивает ногу из слабого раствора серной кислоты не так быстро, как она это делает без соли. Такое же торможение реакции мы наблюдали, когда действовали на промежуточный мозг лягушки магнитом или светом. Значит, магнитное поле действительно воспринимается промежуточным мозгом. Его удаление у рыб приводило к исчезновению рефлекса на магнит, подобно тому, как разрушение слухового аппарата прекращает восприятие звука.
Наш раздражитель не только странно действует, но и странно воспринимается. Для него, оказывается, не нужно специального органа чувств. Он беспрепятственно проникает всюду, но действует только на определенный участок мозга. Если принять такую точку зрения, то можно объяснить некоторые странности в воздействии магнита.
Итак, с каким бы раздражителем мы ни имели дело, возбуждение от него обязательно пройдет через промежуточный мозг. Магнитное поле как бы занимает здесь путь на узловой железнодорожной станции и задерживает движение других поездов-возбуждений. Вот почему магнит оказывает сильное тормозное действие!
Как слабый раздражитель магнитное поле не может само пробраться в другие отделы нервной системы и потому не вызывает реакций. Но если ему помочь, если применять его вместе с сильным раздражителем, прокладывающим дорогу, то на магнит можно выработать условный рефлекс.
Вернемся к нашим опытам. У рыб рефлексы замыкаются в промежуточном мозгу. Значит, возбуждению, вызванному магнитом, здесь нужно только немного продвинуться, и произойдет образование условного рефлекса. У птиц условные рефлексы замыкаются в переднем мозгу. Магниту туда трудно пробраться, и потому на него нельзя выработать условный рефлекс у птиц. Возможно, что на человека магнит действует совсем по-иному.
Наконец, сходство со светом тоже можно объяснить непосредственным действием магнита на промежуточный мозг. Именно этот отдел мозга тесно связан со зрением. Глаза, по существу, являются выростами промежуточного мозга. Так что возбуждение, вызванное постоянным магнитным полем, скорее всего, может направиться по наиболее широкому пути — зрительному тракту.
Мы заканчиваем разговор о странном раздражителе с чувством неудовлетворенности, будто прочитали только несколько листков из середины интереснейшей повести. Ведь осталось еще много неизвестного. Каким образом магнитное поле в промежуточном мозгу превращается в нервное возбуждение? Как магнит действует на людей? Как практически использовать уже известные свойства магнита? Ответы на эти и многие другие вопросы могут быть получены лишь в результате труда исследователей различных специальностей, поставивших своей целью выяснить связи между постоянным магнитным полем и жизнью.
Автор: Ю. Д. Холодов.